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Abstract

A parabolic and hyperbolic numerical formulation of the boundary inverse heat conduction problems is considered
in this paper[ The control volume algorithm is combined with a digital _lter method to estimate temperature and heat
~ux values on a surface of a body based on the temperature measurement inside the body[ Numerical experiments were
carried out to obtain the best value of the non negative coe.cient of the hyperbolic equation using noisy and smoothed
input data[ The accuracy of the method is veri_ed by comparison with a direct "analytical# solution of the problem[ The
in~uence of the relatively high noise into measurement data is studied[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a thermal di}usivity
c speci_c heat
f smoothed measured value of temperature at time t
L number of future "or past# temperatures
l width
nx number of nodes
q heat ~ux
T nodal temperature
T9 initial temperature
t time
x spatial variable[

Greek symbols
Dt time step
b non negative coe.cient
Dx control volume dimension
d absolute error
r density
l thermal conductivity
t random values
j mean square error
V mean relative error[

� Corresponding author[

Subscripts
i grid space number
k time index
K number of time steps
meas measured temperature[

0[ Introduction

Over the last few years\ much interest has been directed
towards the use of inverse techniques for solving di}erent
engineering problems that cannot be described math!
ematically by direct methods[ That situation occurs when
all the required data to solve a direct problem or to
obtain a reliable direct solution are not available[ Inverse
problem can be de_ned as a problem where all results are
found when a part of them is known and some boundaries
or reasons may remain unknown[ Such a problem is much
more di.cult to solve than the direct one[ The reason for
this is that it is usually ill!posed ð0Ł\ i[e[ it is very sensitive
to the measurement errors[ To obtain stable results\
special numerical techniques should be used[ Examples
of application of inverse problems include ð0\ 1\ 2Ł ]

"a# industrial process controlling ^
"b# melting\ ablation and freezing processes ^
"c# designing and controlling nozzles\ etc[ ^
"d# nuclear technology[
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Many methods are proposed in the literature for solving
inverse problems[ Examples include iterative gradient
methods\ optimization algorithms\ regularization
methods\ function speci_cation methods\ dynamic pro!
gramming methods\ _ltering methods\ space marching
method\ etc[ Apparently inverse problem solver needs
e.cient direct models and high knowledge with the sta!
bilization methods[ The main objectives of this work are

0[ To draw some conclusions about the use of space
marching methods for solving boundary Inverse Heat
Conduction Problems "IHCPs#\

1[ To study the in~uence of all parameters on the accu!
racy of the algorithm[

This work di}ers from the other works that use space
marching methods as follows ]

0[ A control volume method is used for discretization of
the problem[ This allows to solve much more com!
plicated problem\ e[g[ nonlinear composite body prob!
lems[

1[ A nonlinear numerical formulation of Weber method
ð3Ł is extended to a relatively high noisy input data[ A
digital _lter method is proposed for smoothing noisy
data[

2[ In contrast to many _lter methods the presented digi!
tal _lter method does not need any information about
the beginning and the end of the process[ Also\ any
number of future and past temperatures can be easily
used for smoothing noisy data[

1[ Analysis

A one!dimensional body subjected to unknown heat
~ux and surface temperature at x � l is illustrated in Fig[
0[ The governing equation for the problem is

Fig[ 0[ Numerical discretization for one!dimensional control
volume IHCP[

r"T#c"T#
1T"x\ t#

1t
�

1

1x
l"T#

1T"x\ t#
1x

"0#

with the following boundary conditions

1T"x\ t#
1x

� 9 at x � 9 and t × 9 "1#

q"x\ t# � −l"T#
1T"x\ t#

1x

is to be estimated at x � l g t × 9 "2#

and the initial condition

T"x\ 9# � T9 9 × x × l[ "3#

The additional condition for solving inverse problem is

T"9\ tk# � Texact "tk# for x � 9 g k � 0\1\ [ [ [ \ K "4#

where r denotes the density\ c is the speci_c heat\ t is the
time\ T is the temperature\ l is the conductivity\ T9 is
the uniform initial temperature and Texact is the exact
measured temperature taken from the solution of direct
problem[ The subscript k denotes the time index and K
denotes the total number of time steps[

To solve this problem\ eqn "0# should be discretized[
The discretization can be done in many ways using Finite
Di}erence Method "FDM# or Finite Element Method
"FEM#[ In this work we adopted a Control Volume
Method "CVM# in which the conservation laws applied
directly over a _nite size control volume[ Thus\ the cal!
culation domain should be divided into _nite control
volumes to integrate the governing eqn "0# for each of
them[ Then\ the _nite form of the described equation can
be written easily after de_ning the scheme of di}erence
approximation for the time[ Examples of di}erent
schemes are backward di}erence\ CrankÐNicolson and
central di}erence[ Using the central di}erence scheme for
approximating the time derivative we obtain the fol!
lowing equations ]
For i � 0

ri\kci\k

Dxi

1
Ti\k¦0−Ti\k−0

1Dt
� li\k

Ti¦0\k−Ti\k

Dxi

"5#

solving eqn "5# for Ti¦0\k one obtains

Ti¦0\k �
Dx1

i

3ai\kDt
"Ti\k¦0−Ti\k−0#¦Ti\k "6#

where a is the thermal di}usivity "a � l:"rc##[
For 0 ³ i ³ nx

ri\kci\k

Dxi−0¦Dxi

1
Ti\k¦0−Ti\k−0

1Dt

� li\k

Ti¦0\k−Ti\k

Dxi

¦li−0\k

Ti−0\k−Ti\k

Dxi−0

"7#

solving eqn "7# for Ti¦0\k one obtains

Ti¦0\k �
Dxi−0Dxi¦Dx1

i

3ai\kDt
"Ti\k¦0−Ti\k−0#
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¦$
li−0\k

li\k

Dxi

Dxi−0

¦0%Ti\k−
li−0\k

li\k

Dxi

Dxi−0

Ti−0\k "8#

For i � nx

ri\kci\k

Dxi−0

1
Ti\k¦0−Ti\k−0

1Dt
� li−0\k

Ti−0\k−Ti\k

Dxi−0

−qi\k

"09#

solving eqn "09# for qi\k one obtains

qi\k �
li−0\k

Dxi−0

"Ti−0\k−Ti\k#−
ri\kci\kDxi−0

3Dt
"Ti\k¦0−Ti\k−0#[

"00#

The calculation starts at node i � 0 and at k � 0\
1\ [ [ [ \K−0[ This means that there is no solution at k � K
because the temperature at K¦0 is not de_ned[ After
completing the calculation at i � 0 we start the cal!
culation at i � 1 and at k � 0\ 1\ [ [ [ \K−1 and so on[
Therefore\ the temperature should be taken at several
additional steps "depending on the number of the nodes#
to de_ne the unknown at k � K[ For example the
measurement of temperatures at K¦0 time steps is
needed to _nd T1\K[ Notice the di}erence between the
equation of the heat ~ux obtained from the heat balance
eqn "00# and that obtained from a simple _nite di}erence
scheme "qi\k � l�i\k"Ti\k−Ti−0\k#:Dxi−0#[

2[ Stabilization of the inverse algorithm

Inverse heat conduction problem is usually ill!posed
from the mathematical point of view because the internal
temperature response is damped and lagged with respect
to the surface temperature[ In other words the error into
the results is usually greater than the error into the input
data and the solution may be oscillating[ Therefore\ the
solution may be useless when real data are used[ The
better the algorithm\ the weaker the sensitivity to
measurement errors[ Many methods are presented and
discussed for stabilizing the results[ An extensive review
can be found in Refs ð0\ 2Ł[ Beck ð4Ł recognized that the
future temperature information can be used for sta!
bilizing the numerical results[ That is because measure!
ments taken in the past will extend into the future[
Di}erent methods using future temperatures are pre!
sented by Weber ð3Ł and Beck et al[ ð0\ 5Ł[ In this work
two stabilization methods will be discussed ]

2[0[ Di`ital smoothin` _lters

The idea of _ltering is simply to replace the nodal
temperature by a combination of a set of neighbouring
data including itself[ This has the e}ect of reducing the
noise of the data[ The _ltering can be used to smooth the
data spatially and:or along the time[ For one!dimen!
sional problem there is no need to smooth the data spat!

ially[ Di}erent kinds of _lters were used to stabilize the
inverse algorithms such as Hanning\ triangular\ Gaussian
and Tukey _lters ð6Ð8Ł[

In this work a Gram orthogonal polynomial method
ð09\ 00Ł with a moving averaging _lter window is pro!
posed for smoothing the noisy data[ This method is based
on a least square approximation[ This method does not
need any information about the beginning and the end
of the process[ This is suitable for use in on!line methods
of analysis[ Application of digital _ltering to a series of
equally spaced seven data points is shown in Fig[ 1[
Digital _lter replaces each data value Ti by a combination
of itself and a number of adjacent nodes[ Thus\

fn"tk# � s
n

j�9

bjPj"k# "01#

where f"tk# is the smoothed value of measured tem!
perature at t � k[ Let L is the number of points used
to the left "past temperatures# and to the right " future
temperatures# of the central point at time k[ The subscript
n refers to the total number of data points used for
smoothing process "n � 4 for L � 1\ n � 6 for L � 2\
etc[#[ The parameters in eqn "01# can be calculated as

bj �

s
L

k� −L

T"k#Pj"k#

"1L¦j¦0#;"1L−j#;

"1j¦0#ð"1L#;Ł1

"02#

and

Pj"k# �

s
j

m�9

"−0#m¦j"m¦j# ð1mŁ "L¦k# ðmŁ

"m;#1"1L# ðmŁ
"03#

where T denotes the measured values of temperature[
Thus\ we compute f"t# for each time step as the average
from T"t−L# to T"t¦L#[ This is sometimes called moving
window average[ Notice that xðmŁ � x"x−0#
"x−1# [ [ ["x−m¦0# and m � 0\ 1\ [ [ [

The following equation can be derived "see Appendix#
to _nd the smoothed measured value of temperature at

Fig[ 1[ Smoothing of the measured temperatures using seven
points averaging _lter[
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the center time k considering three past times "k−2\ k−1\
k−0# and three future times "k¦0\ k¦1\ K¦2# ]

f2"tk# � 0
10

ð−1Ti\k−2¦2Ti\k−1¦5Ti\k−0

¦6Ti\k¦5Ti\k¦0¦2Ti\k¦1−1Ti\k¦2Ł[ "04#

The whole time interval is moving one time step for the
next calculation and so on[ At the _rst steps the past
temperatures can be set to be equal to the initial tem!
perature[

Clearly eqns "01#Ð"03# can be used to consider di}erent
past and future temperatures[ The use of seven to 00 data
points is enough to obtain a good approximation[ There
is an optimal relation between the size of time step and
considering future temperatures for a given set of
measurement errors ð0\ 2Ł[ It is recommended to use many
future temperatures when Dt is small[ The choice of the
time step for solving one!dimensional problem is not
troublesome ð0\ 01Ł[ The temperature variation between
two measurements should be large enough to see vari!
ation of temperature and should be greater than measure!
ment errors[

It is worth mentioning that time derivatives of the
temperature data can be derived from eqns "01#Ð"03#
after a mathematical manipulation[ This will be helpful
for solving the exact solution of Bruggraf ð02Ł using real
data[

2[1[ Hyperbolic equation for solvin` IHCP

Weber ð3Ł has proposed the use of hyperbolic di}er!
ential heat conduction problem for governing IHCP
instead of the parabolic equation[ The use of hyperbolic
equation for solving direct problem is seldom and it is
used for solving rapid heat conduction process in metal[
Morse and Feshbach ð03Ł have proposed it as a better
model of heat conduction problem because it does not
require instantaneous transfer of heat[ The hyperbolic
equation has the following form

br"T#c"T#
11T"x\ t#

1t1
¦r"T#c"T#

1t"x\ t#
1t

�
1

1x
l"T#

1T"x\ t#
1x

"05#

is subjected to the eqns "1#Ð"4#[ It can be shown from
eqn "05# that the in~uence of the additional term depends
on the value of the non!negative coe.cient b[ This term
can be negligible when very small value of b is used and
for b � 9 the eqn "0# is yield[ Physically\ b may represent
the time of relaxation "it can be de_ned as the ratio of
the thermal di}usivity to the speed of conducting heat
inside a body#[ A numerical experiment should be used
to obtain the optimal value of b to improve the stability
of IHCP[ The numerical methods for hyperbolic equation
are e.cient and accurate ð2Ł[ Using CVM the dis!

cretization equations for the hyperbolic equation can be
written as follows ]
For i � 0

Ti¦0\k �
b

1ai\k

Dx1
i

Dt1
"Ti\k−0−1Ti\k¦Ti\k¦0#

¦
Dx1

i

3ai\kDt
"Ti\k¦0−Ti\k−0#¦Ti\k[ "06#

For 0 ³ i ³ nx

Ti¦0\k �
b

ai\k

Dxi−0Dxi¦Dx1
i

1Dt1
"Ti\k−0−1Ti\k¦Ti\k¦0#

¦
Dxi−0Dxi¦Dx1

i

3ai\kDt
"Ti\k¦0−Ti\k−0#

¦$
li−0\k

li\k

Dxi

Dxi−0

¦0%Ti\k−
li−0\k

li\k

Dxi

Dxi−0

Ti−0\k[ "07#

For i � nx

qi\k �
li−0\k

Dxi−0

"Ti−0\k−Ti\k#−
ri\kci\kDxi−0

3Dt
"Ti\k¦0−Ti\k−0#

−
bri\kci\kDxi−0

1Dt1
"Ti\k−0−1Ti\k¦Ti\k¦0#[ "08#

Weber did not show how small should be the coe.cient
b[ A value smaller than 9[90 was used to obtain good
results when the data were perturbed at each time step
by uniformly disturbed random errors between 20)[
The method of Weber was extended for solving a two!
dimensional heat conduction problem ð04Ł when an over
speci_ed "overdetermined# problem was solved[ An over!
determined problem was formulated similar to a direct
problem[ The boundary and initial conditions were
known as well as an additional condition that was the
measurement of temperatures at several internal nodes[
Huange et al[ ð04Ł used b � 9[9990 and the additional
condition improved the accuracy of their calculations[
The solution of the problem becomes much more com!
plicated when one boundary condition remains
unknown[

3[ Test cases

To evaluate the accuracy of the method the exact tem!
perature data are needed[ The exact temperature data
are generated by solving analytically the following direct
problem[ A plate of width l is considered "see Fig[ 0#[ It
is at a uniform initial temperature and exposed to the
convective heat transfer at x � l and insulated at x � 9[
The analytical solution for this problem is ]

T"x\ t# � 1T"x\ 9# s
�

m�0

sin mm cos
mmx

l

mm00¦
sin 1mm

1mm 1
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( exp$−0
mm

l 1
1

at% "19#

where mm is the root of the following equation

m tan m � Bi "10#

where Bi is the Biot number[ The _rst twelve eigenvalues
of the eqn "10# are given in Table 0 for Bi � 0[4[ The
discrete heat ~ux is calculated from the heat balance
equation using backward scheme for approximating the
time derivative[

To make the solution more realistic simulated measure!
ment data Tmeas are generated by introducing additive
errors to the exact measurement data Texact according to
the following equation[

Tmeas"i\ k# � Texact "i\ k#¦dt "11#

where d is a maximum absolute error and t is obtained
using a random number generator of a uniform dis!
tribution within the interval ð−0\ 0Ł[ Such a way of
adding random errors creates very severe conditions for
an inverse method ð2Ł[

Example 0 ] A steel plate "l � 49 W m−1 >C\ a � 0[216E!
94 m1 s−0# of 9[924 m width initially at 499>C is insulated
at x � 9 and subjected to the boundary condition of the
1nd kind at x � l[ A thermocouple is attached to the
plate at x � 9[ The measured values of temperature are
calculated from eqn "19#[ Find the surface temperature
and heat ~ux along the time when Dt � 09 s[
Solution ] The convective coe.cient is assumed known
only when solving direct problem in order to prepare
data for solving inverse problem[ The exact temperature
data at x � 9 " for 11 time steps# are summarized in Table
1[ The calculation domain is divided into 6 equally spaced
control volumes and 29 time steps are considered to solve
an inverse problem for 13 steps[ The results of Example
0 are shown in Fig[ 2 " for surface temperature# and
Fig[ 3 " for heat ~ux#[ The following conclusions can be
drawn ]

0[ The simulated surface temperature is in a good agree!
ment with the exact solution[ Accuracy of the results
was also very good when backward scheme for
approximating the time derivative is used[ The reason
of using central di}erence scheme is the lower sen!
sitivity for the noisy data[

1[ The estimated heat ~ux agrees well with the exact value

Table 0
Roots of eqn "10#

m 0 1 2 3 4 5 6 7 8 09 00 01

m 9[8771 2[4311 5[4986 8[4790 01[573 04[722 07[817 11[948 14[081 17[216 20[352 23[59

except for the _rst two time steps[ That is because of
the damping and lagging e}ect[

2[ There is no need to combine the algorithm with the
stabilization methods[

When the problem is solved using a wrong value of initial
temperature\ the accuracy of the results is increased along
the time[ This is another advantage of the proposed al!
gorithm[

Example 1 ] For the same plate as in Example 0 calculate
the surface heat ~ux and surface temperature after dis!
turbing the input data with random errors between 24)
according to eqn "11#[

"a# use digital _lter method of seven points approxi!
mation to smooth the measured data ^

"b# use the hyperbolic form of the inverse heat con!
duction problem ^

"c# use the hyperbolic equation with the smoothed values
of measured temperatures[

Solution ] The obtained values of the noisy data using eqn
"11# are given in Table 1[ We can see that eqn "11# created
very noisy data[ Figure 5 shows heat ~ux results when
using noisy data directly for solving the problem[ The
results are oscillating and unacceptable[ Values of relative
errors for heat ~ux "qexact−qinverse#:qexact are given in Table
2[ We can see measurement errors within an interval
24) can lead to errors more than 249) into the
results[ This shows clearly why inverse problem is di.cult
to solve[ Thus\ the results with using real "noisy# data
requires an e.cient stabilization method[

The in~uence of using the proposed digital _lter
method on smoothing the data is shown in Table 1[
Results of estimation of both temperature distribution
are shown in Fig[ 4 and Fig[ 5\ respectively[ The following
conclusions can be drawn ]

0[ Stability and the accuracy of the results for both sur!
face temperature and surface heat ~ux is improved
greatly in comparison with that obtained using noisy
data[

1[ Accuracy of the surface temperature is increased along
the time and after several steps very good agreement
between exact and estimated results is obtained[

2[ Accuracy of the results for the surface heat ~ux is
acceptable but it is more sensitive to the measurement
errors than the surface temperature especially for the
last time steps[
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Table 1
Temperature input data

Smoothing values of temperature measurement
Time Exact data Noisy data
"s# "analytical solution# eqn "11# seven points averaging _lter eleven points averaging _lter

09 382[476 381[955 376[533 366[660
19 359[128 356[287 347[018 341[609
29 307[161 301[197 319[288 310[211
39 266[269 261[362 267[063 273[598
49 228[655 236[954 239[463 235[322
59 294[618 295[733 298[327 298[028
69 164[947 168[837 168[155 164[782
79 136[336 136[374 137[967 138[051
89 111[596 112[511 110[954 111[534

099 199[159 083[954 086[688 086[585
009 079[045 065[280 066[949 066[705
019 051[965 052[798 047[136 048[023
029 034[799 028[261 033[221 031[403
039 020[052 017[861 018[392 017[540
049 006[885 008[855 003[500 005[200
059 095[049 090[021 094[012 093[256
069 84[383 80[693 82[809 82[534
079 74[896 78[474 73[975 73[677
089 66[172 62[528 65[610 64[616
199 58[413 57[381 57[334 56[605
109 51[434 50[039 59[225 50[557
119 45[155 43[417 44[934 44[371

Fig[ 2[ Temperature distribution at the surface node[

In the 1nd part of the example the noisy data are used to
solve the hyperbolic problem[ To solve eqns "06#Ð"08# we
need the value of b[ Weber used a very small value of
9[90 multiplied directly by the second derivative of the

Fig[ 3[ Heat ~ux values at the surface node[

temperature[ When we use b � 9[90 for solving the pre!
sented example\ additional term of hyperbolic equation
has no in~uence on the solution[ Therefore\ we propose
the following parameter c as a criterion for controlling
the algorithm
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Table 2
Relative errors in the surface heat ~ux

Time 09 19 29 39 49 59 69 79 89 099 009 019
) 08[55 −08[03 9[39 17[29 −6[75 −7[46 −2[41 −03[54 −00[60 7[76 08[84 −16[34
Time 029 039 049 059 069 079 089 199 109 119 129 139
) 01[40 15[88 −32[46 01[52 42[03 −36[11 −01[79 20[02 −03[82 19[32 11[16 19[90

Fig[ 4[ Temperature distribution at the surface node using noisy
data[

Fig[ 5[ Heat ~ux values at the surface node[

c �
b

ai0
Dxi

Dt 1
1

[ "12#

The above parameter considers the in~uence of step size\
thermal properties and b[ Good results are obtained for
the value of c in the range 9[91 and 9[98[ Figures 4 and
6 show the results when b � 3[ Results of the surface heat
~ux calculations can be acceptable but the stability is
worse in comparison with that obtained in the _rst part
of the example[

Figures 4 and 7 show the results when eqns "06#Ð"08#
are solved using smoothed values of noisy data[ The
following conclusions can be summarized ]

0[ Because the surface temperature results are in a good
agreement with the results of the direct problem for
all cases therefore\ the in~uence of such a combination
was minimum[

1[ Accuracy and the stability of the surface heat ~ux
are improved[ The agreement between estimated and
exact heat ~ux values is very good[ This makes the
proposed solution method of much interest for us[
Results for di}erent combinations will be shown in
Example 2[

Fig[ 6[ Heat ~ux values at the surface node[
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Fig[ 7[ Heat ~ux values at the surface node using hyperbolic
equation with b � 3[

Because of the simplicity of considered smoothing pro!
cedure we can also smooth the results but for the pre!
sented examples there is no need to post!_ltering the
results[

Example 2 ] For Example 1 show the in~uence of b into
the results[ Use b � 9\ 9[2\ 3\ 4 and 09[ Calculate both
mean relative error and mean square error[

Solution ] The mean square error "j# is

j �X
0
K

s
K

k�0

"qk
estimated−qk

exact#1 "13#

where qexact is the exact value of heat ~ux taken from the
solution of the direct "analytical# problem[ The mean
relative error "V# is given by ]

V �
0
K

s
K

k�0

=qk
estimated−qk

exact =
qk

exact

[ "14#

Results of calculations are presented in Tables 3 and 4[
The following conclusions can be drawn ]

0[ With using noisy data to solve eqns "06#Ð"08# best
results are obtained at c � 9[9641 "b � 3#[ Both mean
relative and mean square errors are reduced[

1[ When the smoothed data are used to solve eqns "06#Ð

Table 3
The in~uence of c on solution using noisy data taken from Table 1

c 9[9 "b � 9# 9[99453 "b � 9[2# 9[9453 "b � 2# 9[9641 "b � 3# 9[983 "b � 4# 9[077 "b � 09#
j ")# 19[239 07[840 00[235 00[906 00[859 05[07
V "W m−1# 09090 8257[5 5292[2 5164[3 5677[0 01850[8

"08# the mean relative errors are reduced for all cases
and the values of mean square error depend on c[

2[ The best results are obtained when c varied between
9[9077 "b � 0# and 9[983 "b � 4#[ We see c has small
values[ This maintains the numerical stability and the
heat conduction nature of the problem[

3[ The accuracy of the results is reduced again when we
use b × 4[

Example 3 ] For Example 2 with b � 1 ]

"a# estimate the surface heat ~ux considering di}erent
number of future temperatures for smoothing noisy
input data[ Use three and _ve future temperatures ^

"b# calculate the mean relative error and mean square
error for each case[

Solution ] Smoothed values of noisy data using a set of
seven data points is calculated from eqn "04# while the
smoothed values of noisy data using a set of eleven data
points can be calculated from the following equation
"derived from eqns "01#Ð"03## ]

f4"tk# � 0
318

ð−25Ti\k−4¦8Ti\k−3¦33Ti\k−2

¦58Ti\k−1¦73Ti\k−0¦78Ti\k¦73Ti\k¦0¦58Ti\k¦1

¦33Ti\k¦2¦8Ti\k¦3−25Ti\k¦4Ł[ "15#

Results of calculation for part a are shown in Fig[ 8[ The
estimated surface heat ~ux agrees well with the exact
solution of the problem[ At the _rst steps the results were
better with using seven points averaging _lter[ This can
be shown clearly when the second part of the example is
solved "12 time steps are considered#[ Values of mean
relative and mean square errors are reported in Table 5[
We see from Table 5 that the mean relative error is
reduced while the mean square error is increased[ There!
fore\ the over smoothing data is not recommended
because the stability increases but this leads to reduce the
accuracy "the variance increases#[ However\ considering
future temperatures depends on the size of time step[

4[ Conclusions

This work provides a good insight on using control
volume formulation for solving inverse heat conduction
problems[ The main conclusions can be summarized as
follows ]
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Table 4
The in~uence of c on solution using smoothed data taken from Table 1

c 9[ 9[99453 9[9077 9[9265 9[9453 9[9641 9[983 9[077
"b � 9# "b � 9[2# "b � 0# "b � 1# "b � 2# "b � 3# "b � 4# "b � 09#

j ")# 8[59 6[56 6[97 5[73 6[191 6[42 6[82 01[13
V "W m−1# 5994 4844 4852 5113 5694 6237 7092 01441

Fig[ 8[ Estimated surface heat ~ux values using di}erent future
temperatures for smoothing the data[

0[ Accuracy and the stability of results are improved
when a hyperbolic form of heat conduction problem
is solved using the control volume method "for
discretization# and the digital _lter method "for
stabilization#[

1[ Use the proposed algorithm enables to handle a rela!
tively high noisy input data[

2[ No iteration is needed[ Therefore\ the computation
time is very short[

3[ The proposed methods can be extended for solving
multi!dimensional problems[ The _rst investigation
showed good results for estimating of surface tem!
peratures[

4[ It can be used for composite bodes and for nonlinear
problems[

Table 5
The mean relative and mean square errors in the estimated surface ~ux

number of future and past temperatures seven data points eleven data points
j ")# 5[7396 5[23
V "W m−1# 5113[2 8111

5[ It is not important to place the sensor at an insulating
surface[ The sensor can be placed anywhere inside the
body[ In such a case we need the value of heat ~ux at
the node where the sensor is located or two interior
sensors should be considered[
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Appendix

The derivation of eqn "04# is seen below[ To calculate
the smoothed values of measured temperature at the
center of seven data points L � 2 and n � j � 2[ Thus\
From eqn "01#

f2"tk# � b9P9"k#¦b0P0"k#¦b1P1"k#¦b2P2"k# "a#

From eqn "03#

P9"k# � 0 P0"k# � 0
2
k

P1"k# � 0
4
"k1−3# P2"k# � 0

5
"k2−6k# "b#

where k � −L\ −L¦0\ [ [ [ \L[
From eqn "02#

b9 � 0
6
ðT−2¦T−1¦T−0¦T9¦T0¦T1¦T2Ł

b0 � 0
17

ð−8T−2−5T−1−2T−0¦2T0¦5T1¦8T2Ł

b1 � 0
73

ð14T−2−04T−0−19T9−04T0¦14T2Ł

b2 � 0
5
ð−T−2¦T−1¦T−0−T0−T1¦T2Ł "c#

substituting eqn "b# and eqn "c# into eqn "a# to obtain
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f2"tk# � 0
6
ðT−2¦T−1¦T−0¦T9¦T0¦T1¦T2Ł

¦ 0
17

ð−8T−2−5T−1−2T−0¦2T0¦5T1¦8T2Łk¦

¦ 0
73

ð14T−2−04T−0−19T9−04T0¦14T2Ł"k1−3#

¦0
5
ð−T−2¦T−1¦T−0−T0−T1¦T2Ł"k2−6k#[ "d#

We see eqn "d# can be used to smooth the data spatially\
for each value of k new equation is obtained[ For one!
dimensional problem there is no need for such a
smoothing because the temperature is measured only at
one node[ Rewriting of eqn "d# at the center of the seven
data points "k � 9# gives

f2"9# � 0
10

ð−1T−2¦2T−1¦5T−0

¦6T9¦5T0¦2T1−1T2Ł[ "e#

The general form of the above equation gives eqn "04#[
For more information see ð09\ 00Ł[
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