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Abstract

A parabolic and hyperbolic numerical formulation of the boundary inverse heat conduction problems is considered
in this paper. The control volume algorithm is combined with a digital filter method to estimate temperature and heat
flux values on a surface of a body based on the temperature measurement inside the body. Numerical experiments were
carried out to obtain the best value of the non negative coefficient of the hyperbolic equation using noisy and smoothed
input data. The accuracy of the method is verified by comparison with a direct (analytical) solution of the problem. The
influence of the relatively high noise into measurement data is studied. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature
a thermal diffusivity
specific heat

width

number of nodes
heat flux

nodal temperature
T, initial temperature
t time
x spatial variable.

NS S TR

Greek symbols

At time step

S non negative coefficient

Ax control volume dimension
0 absolute error

p density

A thermal conductivity

t random values

¢ mean square error

Q mean relative error.
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smoothed measured value of temperature at time ¢
number of future (or past) temperatures

Subscripts

i grid space number

k time index

K number of time steps
meas measured temperature.

1. Introduction

Over the last few years, much interest has been directed
towards the use of inverse techniques for solving different
engineering problems that cannot be described math-
ematically by direct methods. That situation occurs when
all the required data to solve a direct problem or to
obtain a reliable direct solution are not available. Inverse
problem can be defined as a problem where all results are
found when a part of them is known and some boundaries
or reasons may remain unknown. Such a problem is much
more difficult to solve than the direct one. The reason for
this is that it is usually ill-posed [1], i.e. it is very sensitive
to the measurement errors. To obtain stable results,
special numerical techniques should be used. Examples
of application of inverse problems include [1, 2, 3]:

(a) industrial process controlling ;

(b) melting, ablation and freezing processes ;
(c) designing and controlling nozzles, etc. ;
(d) nuclear technology.
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Many methods are proposed in the literature for solving
inverse problems. Examples include iterative gradient
methods, optimization algorithms, regularization
methods, function specification methods, dynamic pro-
gramming methods, filtering methods, space marching
method, etc. Apparently inverse problem solver needs
efficient direct models and high knowledge with the sta-
bilization methods. The main objectives of this work are

1. To draw some conclusions about the use of space
marching methods for solving boundary Inverse Heat
Conduction Problems (IHCPs),

2. To study the influence of all parameters on the accu-
racy of the algorithm.

This work differs from the other works that use space
marching methods as follows:

1. A control volume method is used for discretization of
the problem. This allows to solve much more com-
plicated problem, e.g. nonlinear composite body prob-
lems.

2. A nonlinear numerical formulation of Weber method
[4] is extended to a relatively high noisy input data. A
digital filter method is proposed for smoothing noisy
data.

3. In contrast to many filter methods the presented digi-
tal filter method does not need any information about
the beginning and the end of the process. Also, any
number of future and past temperatures can be easily
used for smoothing noisy data.

2. Analysis
A one-dimensional body subjected to unknown heat

flux and surface temperature at x = /is illustrated in Fig.
1. The governing equation for the problem is
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Fig. 1. Numerical discretization for one-dimensional control
volume IHCP.

oT(x,1) 0 OT(x, 1)
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p(T)e(1) 77 = - AD) M
with the following boundary conditions
0T (x,t

(D ) atx=0 and >0 @)

0x

0T (x, 1)

g0 = —UT) =5

istobeestimatedatx=/At>0 (3)
and the initial condition
T(x,00 =T, 0>x>1 4)
The additional condition for solving inverse problem is
T0,t) = Toue(ty) forx=0Ak=12,...,K %)

where p denotes the density, ¢ is the specific heat, ¢ is the
time, T is the temperature, A is the conductivity, 7 is
the uniform initial temperature and T, is the exact
measured temperature taken from the solution of direct
problem. The subscript k denotes the time index and K
denotes the total number of time steps.

To solve this problem, eqn (1) should be discretized.
The discretization can be done in many ways using Finite
Difference Method (FDM) or Finite Element Method
(FEM). In this work we adopted a Control Volume
Method (CVM) in which the conservation laws applied
directly over a finite size control volume. Thus, the cal-
culation domain should be divided into finite control
volumes to integrate the governing eqn (1) for each of
them. Then, the finite form of the described equation can
be written easily after defining the scheme of difference
approximation for the time. Examples of different
schemes are backward difference, Crank—Nicolson and
central difference. Using the central difference scheme for
approximating the time derivative we obtain the fol-
lowing equations:

Fori=1
Ax; Tijoy — T T.i.—T;
p[akC[’k le 1.k+12At ik—1 — /1[‘,\, 1+1.Akx‘ ik (6)
solving eqn (6) for 7, ,, one obtains
Ax?
T[+ 1.k — 4a[’kAt(Ti‘k+l - TU\'— l) + ’Iv[,k (7)

where a is the thermal diffusivity (a = 1/(pc)).
Forl <i<n,

Axi_ +Ax; Tijpy — Tip—

PikCik ) AL
Tiw—Ti T =T
T T e ®)
solving eqn (8) for 7, ,, one obtains
Ax;_Ax;+Ax?
T =—————(Tu1—Tis)

4a,-_/cAl
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Aicik Ax; Zicik Ax;
———+1|T— - T; 9
|: A Axi_, * :| ”A A Axi_, - ©)
Fori=n,
e Axi_y Tigrr — Tip 'y T x—Tix .
PikCixk ) SAL i— 1k 4Ax,~,1 qik
(10)
solving eqn (10) for ¢,, one obtains
Ji vk PikCinAX;_
ik = Axil_kl (Ticvu—Ti) — %(Ti.k+l —Tix—1)-

(11
The calculation starts at node i=1 and at k=1,
2,...,K—1.This means that there is no solutionat k = K
because the temperature at K+ 1 is not defined. After
completing the calculation at i =1 we start the cal-
culation at i=2 and at k=1, 2,...,K—2 and so on.
Therefore, the temperature should be taken at several
additional steps (depending on the number of the nodes)
to define the unknown at k= K. For example the
measurement of temperatures at K+1 time steps is
needed to find T,x. Notice the difference between the
equation of the heat flux obtained from the heat balance
eqn (11) and that obtained from a simple finite difference
scheme (¢, = A5(Tiw— Tim 1) A _y).

3. Stabilization of the inverse algorithm

Inverse heat conduction problem is usually ill-posed
from the mathematical point of view because the internal
temperature response is damped and lagged with respect
to the surface temperature. In other words the error into
the results is usually greater than the error into the input
data and the solution may be oscillating. Therefore, the
solution may be useless when real data are used. The
better the algorithm, the weaker the sensitivity to
measurement errors. Many methods are presented and
discussed for stabilizing the results. An extensive review
can be found in Refs [1, 3]. Beck [5] recognized that the
future temperature information can be used for sta-
bilizing the numerical results. That is because measure-
ments taken in the past will extend into the future.
Different methods using future temperatures are pre-
sented by Weber [4] and Beck et al. [1, 6]. In this work
two stabilization methods will be discussed :

3.1. Digital smoothing filters

The idea of filtering is simply to replace the nodal
temperature by a combination of a set of neighbouring
data including itself. This has the effect of reducing the
noise of the data. The filtering can be used to smooth the
data spatially and/or along the time. For one-dimen-
sional problem there is no need to smooth the data spat-

ially. Different kinds of filters were used to stabilize the
inverse algorithms such as Hanning, triangular, Gaussian
and Tukey filters [7-9].

In this work a Gram orthogonal polynomial method
[10, 11] with a moving averaging filter window is pro-
posed for smoothing the noisy data. This method is based
on a least square approximation. This method does not
need any information about the beginning and the end
of the process. This is suitable for use in on-line methods
of analysis. Application of digital filtering to a series of
equally spaced seven data points is shown in Fig. 2.
Digital filter replaces each data value T; by a combination
of itself and a number of adjacent nodes. Thus,

(1) = Z b,P,(k) (12)

where f(#,) is the smoothed value of measured tem-
perature at ¢t = k. Let L is the number of points used
to the left (past temperatures) and to the right (future
temperatures) of the central point at time k. The subscript
n refers to the total number of data points used for
smoothing process (n =5 for L =2, n=7 for L =3,
etc.). The parameters in eqn (12) can be calculated as

GG

b= L DL =) (13)
@+ Dien T
and
S (= 1"+ (L + k)
Pk =" (14

(m))>@L)"

where 7' denotes the measured values of temperature.
Thus, we compute f{¢) for each time step as the average
from T,,_, to T, . This is sometimes called moving
window  average. Notice that x" = x(x—1)
x=2)...(x—m+1)andm=1,2,...

The following equation can be derived (see Appendix)
to find the smoothed measured value of temperature at

ik-2
o ,k+3
) Lk+2 o
k1 N T S
o o
ik-3 Lk+1
-~ Al - t/At
4 i 1 1 1 i ;
L L

Fig. 2. Smoothing of the measured temperatures using seven
points averaging filter.



3734 Nehad Al-Khalidy/Int. J. Heat Mass Transfer 41 (1998) 3731-3740

the center time k considering three past times (k—3, k—2,
k—1) and three future times (k+1, k+2, K+3):

f3(t) = ;T[_ZTI'A'—S +3T 2 +6T;

+ 7T +6T k1 +3T k2 —2T 5] (15)

The whole time interval is moving one time step for the
next calculation and so on. At the first steps the past
temperatures can be set to be equal to the initial tem-
perature.

Clearly eqns (12)—(14) can be used to consider different
past and future temperatures. The use of seven to 11 data
points is enough to obtain a good approximation. There
is an optimal relation between the size of time step and
considering future temperatures for a given set of
measurement errors [1, 3]. It is recommended to use many
future temperatures when At is small. The choice of the
time step for solving one-dimensional problem is not
troublesome [1, 12]. The temperature variation between
two measurements should be large enough to see vari-
ation of temperature and should be greater than measure-
ment errors.

It is worth mentioning that time derivatives of the
temperature data can be derived from eqns (12)—(14)
after a mathematical manipulation. This will be helpful
for solving the exact solution of Bruggraf [13] using real
data.

3.2. Hyperbolic equation for solving IHCP

Weber [4] has proposed the use of hyperbolic differ-
ential heat conduction problem for governing IHCP
instead of the parabolic equation. The use of hyperbolic
equation for solving direct problem is seldom and it is
used for solving rapid heat conduction process in metal.
Morse and Feshbach [14] have proposed it as a better
model of heat conduction problem because it does not
require instantaneous transfer of heat. The hyperbolic
equation has the following form

( ) Ot(\ )

Bp(T)e (T) +o(T)e(T) ——

aT(x 0

=AM (16)
is subjected to the eqns (2)—(5). It can be shown from
eqn (16) that the influence of the additional term depends
on the value of the non-negative coefficient . This term
can be negligible when very small value of f is used and
for f = 0 the eqn (1) is yield. Physically,  may represent
the time of relaxation (it can be defined as the ratio of
the thermal diffusivity to the speed of conducting heat
inside a body). A numerical experiment should be used
to obtain the optimal value of f§ to improve the stability
of IHCP. The numerical methods for hyperbolic equation
are efficient and accurate [3]. Using CVM the dis-

cretization equations for the hyperbolic equation can be
written as follows :
Fori=1

B AX?

i+1k = E Al; (]vi.k—l —2Tf.k+ Ti.k+ 1)

Ax}
+ (TI k+1 7

Y T )+ T (I7)
ik

For 1l <i<n,
B Ax;_ Ax;+Ax?
Tiivi= 717(7";./‘»71 2T+ Tigs1)
ik 2AF7
Ax; | Ax;+AX?
4a,, At
n |:)‘i—l.k Ax; Aiciwe AX;

(Tigsr—Tig—1)

—— 4+ 1 |T;— T\« 18
Jige DX, + } LA Aig Axiy 7T e (1)
Fori=n,

;“i—lk ptl\qkA‘Ct 1
KT, —T,,)— ki L
( i— 1,k r‘/c) 4A

qdik = Ax, (Tiger1 —Tig)

ﬁP:AC,kAxx 1
2A7?

Weber did not show how small should be the coefficient
f. A value smaller than 0.01 was used to obtain good
results when the data were perturbed at each time step
by uniformly disturbed random errors between =+1%.
The method of Weber was extended for solving a two-
dimensional heat conduction problem [15] when an over
specified (overdetermined) problem was solved. An over-
determined problem was formulated similar to a direct
problem. The boundary and initial conditions were
known as well as an additional condition that was the
measurement of temperatures at several internal nodes.
Huange et al. [15] used f = 0.0001 and the additional
condition improved the accuracy of their calculations.
The solution of the problem becomes much more com-
plicated when one boundary condition remains
unknown.

(Tl/c 1 271[,k+Ti‘/c+l)' (19)

4. Test cases

To evaluate the accuracy of the method the exact tem-
perature data are needed. The exact temperature data
are generated by solving analytically the following direct
problem. A plate of width /is considered (see Fig. 1). It
is at a uniform initial temperature and exposed to the
convective heat transfer at x = / and insulated at x = 0.
The analytical solution for this problem is:

HH?
T(x.f) = 2T(x,0) Y !

m=1 Sln 2.um
1
’”( * Zlum )

sin p,, COS ——
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* eXp [ — <H}">zat:| (20)

where p,, is the root of the following equation
utanu = Bi 1)

where Bi is the Biot number. The first twelve eigenvalues
of the eqn (21) are given in Table 1 for Bi = 1.5. The
discrete heat flux is calculated from the heat balance
equation using backward scheme for approximating the
time derivative.

To make the solution more realistic simulated measure-
ment data T, are generated by introducing additive
errors to the exact measurement data T, according to
the following equation.

Tmeus (i’ k) = TCXEIC( (i’ k) + 6T (22)

where ¢ is a maximum absolute error and 7 is obtained
using a random number generator of a uniform dis-
tribution within the interval [—1, 1]. Such a way of
adding random errors creates very severe conditions for
an inverse method [3].

Example 1: A steel plate (1 = 50 Wm 2 °C, a = 1.327E-
05m?s™') of 0.035 m width initially at 500°C is insulated
at x = 0 and subjected to the boundary condition of the
2nd kind at x =/ A thermocouple is attached to the
plate at x = 0. The measured values of temperature are
calculated from eqn (20). Find the surface temperature
and heat flux along the time when Ar = 10's.

Solution: The convective coefficient is assumed known
only when solving direct problem in order to prepare
data for solving inverse problem. The exact temperature
data at x = 0 (for 22 time steps) are summarized in Table
2. The calculation domain is divided into 7 equally spaced
control volumes and 30 time steps are considered to solve
an inverse problem for 24 steps. The results of Example
1 are shown in Fig. 3 (for surface temperature) and
Fig. 4 (for heat flux). The following conclusions can be
drawn:

1. The simulated surface temperature is in a good agree-
ment with the exact solution. Accuracy of the results
was also very good when backward scheme for
approximating the time derivative is used. The reason
of using central difference scheme is the lower sen-
sitivity for the noisy data.

2. Theestimated heat flux agrees well with the exact value

Table 1
Roots of eqn (21)

except for the first two time steps. That is because of
the damping and lagging effect.

3. There is no need to combine the algorithm with the
stabilization methods.

When the problem is solved using a wrong value of initial
temperature, the accuracy of the results is increased along
the time. This is another advantage of the proposed al-
gorithm.

Example 2 : For the same plate as in Example 1 calculate

the surface heat flux and surface temperature after dis-

turbing the input data with random errors between + 5%

according to eqn (22).

(a) use digital filter method of seven points approxi-
mation to smooth the measured data;

(b) use the hyperbolic form of the inverse heat con-
duction problem;

(¢) use the hyperbolic equation with the smoothed values
of measured temperatures.

Solution : The obtained values of the noisy data using eqn
(22) are given in Table 2. We can see that eqn (22) created
very noisy data. Figure 6 shows heat flux results when
using noisy data directly for solving the problem. The
results are oscillating and unacceptable. Values of relative
errors for heat fluxX (Geyact — Ginverse) /gexact ar€ given in Table
3. We can see measurement errors within an interval
+5% can lead to errors more than +350% into the
results. This shows clearly why inverse problem is difficult
to solve. Thus, the results with using real (noisy) data
requires an efficient stabilization method.

The influence of using the proposed digital filter
method on smoothing the data is shown in Table 2.
Results of estimation of both temperature distribution
are shown in Fig. 5 and Fig. 6, respectively. The following
conclusions can be drawn:

1. Stability and the accuracy of the results for both sur-
face temperature and surface heat flux is improved
greatly in comparison with that obtained using noisy
data.

2. Accuracy of the surface temperature is increased along
the time and after several steps very good agreement
between exact and estimated results is obtained.

3. Accuracy of the results for the surface heat flux is
acceptable but it is more sensitive to the measurement
errors than the surface temperature especially for the
last time steps.

m 1 2 3 4 5 6

u 0.9882  3.5422  6.5097  9.5801 12.684  15.833

7 8 9 10 11 12

18.928  22.059  25.192  28.327 31463  34.60
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Table 2
Temperature input data

Smoothing values of temperature measurement

Time Exact data Noisy data
(s) (analytical solution) eqn (22) seven points averaging filter eleven points averaging filter
10 493.587 492.066 487.644 477.771
20 460.239 467.398 458.129 452.710
30 418.272 412.208 420.399 421.322
40 377.370 372.473 378.174 384.609
50 339.766 347.065 340.574 346.433
60 305.729 306.844 309.438 309.139
70 275.058 279.948 279.266 275.893
80 247.447 247.485 248.078 249.162
90 222.607 223.622 221.065 222.645
100 200.260 194.065 197.799 197.696
110 180.156 176.391 177.050 177.816
120 162.076 163.809 158.247 159.134
130 145.800 139.372 144.332 142.514
140 131.163 128.972 129.403 128.651
150 117.996 119.966 114.611 116.311
160 106.150 101.132 105.123 104.367
170 95.494 91.704 93.910 93.645
180 85.907 89.585 84.086 84.788
190 77.283 73.639 76.721 75.727
200 69.524 68.492 68.445 67.716
210 62.545 61.140 60.336 61.668
220 56.266 54.528 55.045 55.482
500 —4 600000 —
T dx=5mm, dt=10's, a=1.327E-05 dx=5mm, dt=10s, a=1.327E-05
400 | analytical solution Bl | analytical solution
&  inverse solution using perfect data W inverse solution using perfect data
T 400000 —
) e
3 5
2 x _
H =
g 3
i T 200000
0 ° — T T T T T T T T 1
! | ! 1 ! I T | T 1 0 50 100 150 200 250
0 50 100 150 200 250 Time (s)
Time (s)

Fig. 3. Temperature distribution at the surface node.

In the 2nd part of the example the noisy data are used to
solve the hyperbolic problem. To solve eqns (17)—(19) we
need the value of . Weber used a very small value of
0.01 multiplied directly by the second derivative of the

Fig. 4. Heat flux values at the surface node.

temperature. When we use f§ = 0.01 for solving the pre-
sented example, additional term of hyperbolic equation
has no influence on the solution. Therefore, we propose
the following parameter i as a criterion for controlling
the algorithm
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Table 3
Relative errors in the surface heat flux
Time 10 20 30 40 50 60 70 80 90 100 110 120
% 19.66  —19.14 040 2830 —7.86  —857 —352 —1465 —11.71 887 1995 —27.45
Time 130 140 150 160 170 180 190 200 210 220 230 240
Y% 12.51 26.99 —43.57 12.63 53.14 —47.22  —12.80 31.13  —14.93 20.43 22.27 20.01
2
500 —g B(Ax:\
=L . 23
v a( At) 23)
- &S mm dt=10s, 1. 27606
—— andyica soluion The above parameter considers the influence of step size,
400 — ¢ meescltionisrg hyetoic win e thermal properties and . Good results are obtained for
4+  inversesdution after filtering the deta . .
i @  inversesoutonate sToctingthecita sing yperbolicE wih Btoes the value of  in the range 0.02 and 0.09. Figures 5 and
5 7 show the results when § = 4. Results of the surface heat
< A flux calculations can be acceptable but the stability is
% i worse in comparison with that obtained in the first part
g of the example.
§ 200 — Figures 5 and 8 show the results when eqns (17)—(19)
| are solved using smoothed values of noisy data. The
following conclusions can be summarized :
100 — 1. Because the surface temperature results are in a good
| agreement with the results of the direct problem for
all cases therefore, the influence of such a combination
0 T T T T T T T ] was minimum.
0 50 100 150 200 250 2. Accuracy and the stability of the surface heat flux
Time (s) . .
are improved. The agreement between estimated and
exact heat flux values is very good. This makes the
Fig. 5. Temperature distribution at the surface node using noisy proposed solgtlon method. of .much llnterest for uls.
data. Results for different combinations will be shown in
Example 3.
600000 — 4 600000 —
dx=5mm, dt=10 s, a=1.327E-05 dx=5mm, dt=10's, a=1.327E-05
| analytical solution P analytical solution
POA + inverse solution using the noisy data 7] o * inverse solution using hyperbolic Eq. with Beta=4
< inverse solution after filtering the noisy data
400000 — 400000 —
E E
g g
£ . 5 .
r T
200000 — 200000 —
0 — T T " T " T T 1 0 — T T T T " T T 1

Time (s)

Fig. 6. Heat flux values at the surface node.

150
Time (s)

Fig. 7. Heat flux values at the surface node.
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600000 —
dx=5mm, dt=10's, a=1.327E-05
T analytical solution
° [ ] [ ) inverse solution after filtering the data
400000 —
E
g
x -
=2
w
-
©
[}
ju s
200000 —
° L R I R A
0 ) 150 200 250
Time (s)

Fig. 8. Heat flux values at the surface node using hyperbolic
equation with § = 4.

Because of the simplicity of considered smoothing pro-
cedure we can also smooth the results but for the pre-
sented examples there is no need to post-filtering the
results.

Example 3: For Example 2 show the influence of f into
the results. Use f =0, 0.3, 4, 5 and 10. Calculate both
mean relative error and mean square error.

Solution : The mean square error (£) is

l K

é = \/K Z (q/e(stimated 7q}e(xacl)2 (24)
k=1

where ¢, 1s the exact value of heat flux taken from the

solution of the direct (analytical) problem. The mean

relative error (Q) is given by :

Q= l X |q§stilnated - q{c(xact| ]

Kk: ! quact

Results of calculations are presented in Tables 4 and 5.

The following conclusions can be drawn :

(25)

1. With using noisy data to solve eqns (17)—(19) best
results are obtained at iy = 0.0752 (f = 4). Both mean
relative and mean square errors are reduced.

2. When the smoothed data are used to solve eqns (17)—

Table 4

The influence of { on solution using noisy data taken from Table 2

(19) the mean relative errors are reduced for all cases
and the values of mean square error depend on .

3. The best results are obtained when  varied between
0.0188 (f = 1) and 0.094 (f = 5). We see Y has small
values. This maintains the numerical stability and the
heat conduction nature of the problem.

4. The accuracy of the results is reduced again when we
use f§ > 5.

Example 4: For Example 3 with f = 2:

(a) estimate the surface heat flux considering different
number of future temperatures for smoothing noisy
input data. Use three and five future temperatures ;

(b) calculate the mean relative error and mean square
error for each case.

Solution: Smoothed values of noisy data using a set of
seven data points is calculated from eqn (15) while the
smoothed values of noisy data using a set of eleven data
points can be calculated from the following equation
(derived from eqns (12)—(14)):

fs (tk) = [_36Ti‘k75 +9Ti,k—4 +44’1—Vi,k—3

429
+69T 4> +84T_ +89T +84T 4| +69T 4>
+44Ti.k+3 +9Ti./c+4_36Ti,k+5]- (26)

Results of calculation for part @ are shown in Fig. 9. The
estimated surface heat flux agrees well with the exact
solution of the problem. At the first steps the results were
better with using seven points averaging filter. This can
be shown clearly when the second part of the example is
solved (23 time steps are considered). Values of mean
relative and mean square errors are reported in Table 6.
We see from Table 6 that the mean relative error is
reduced while the mean square error is increased. There-
fore, the over smoothing data is not recommended
because the stability increases but this leads to reduce the
accuracy (the variance increases). However, considering
future temperatures depends on the size of time step.

5. Conclusions

This work provides a good insight on using control
volume formulation for solving inverse heat conduction
problems. The main conclusions can be summarized as
follows:

v 0.0(p=0) 0.00564 (f =0.3) 0.0564 (f =3) 0.0752 (f =4) 0.094 (p=5) 0.188 (f = 10)
& (%) 20.340 18.951 11.346 11.017 11.960 16.18
Q(Wm™?) 10101 9368.6 6303.3 6275.4 6788.1 12961.9
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Table 5
The influence of i on solution using smoothed data taken from Table 2
v 0. 0.00564 0.0188 0.0376 0.0564 0.0752 0.094 0.188
B=0) (B=03) B="1 B=2 B=3) B=4 B=23 (B =10
& (%) 9.60 7.67 7.08 6.84 7.202 7.53 7.93 12.24
Q(Wm?) 6005 5955 5963 6224 6705 7348 8103 12552
600000 — 6. Itis not important to place the sensor at an insulating
surface. The sensor can be placed anywhere inside the
dx=5mm, dt=10's, a=1.327E-05, Beta=2
— anetyica solution body. In such a case we need the value of heat flux at
. . @ inverse solution using three future temperstures the node where the sensor is located or two interior
¢ ¢  inversesolution using five future temperatures sensors should be considered.
400000 |
E
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Fig. 9. Estimated surface heat flux values using different future
temperatures for smoothing the data.

1. Accuracy and the stability of results are improved
when a hyperbolic form of heat conduction problem
is solved using the control volume method (for
discretization) and the digital filter method (for
stabilization).

. Use the proposed algorithm enables to handle a rela-
tively high noisy input data.

. No iteration is needed. Therefore, the computation
time is very short.

. The proposed methods can be extended for solving
multi-dimensional problems. The first investigation
showed good results for estimating of surface tem-
peratures.

. It can be used for composite bodes and for nonlinear
problems.

Table 6

Appendix

The derivation of eqn (15) is seen below. To calculate
the smoothed values of measured temperature at the
center of seven data points L = 3 and n = j = 3. Thus,
From eqn (12)

f3(t) = by Py (k) + b, P, (k) + b, P, (k) + b, P (k) (a)
From eqn (14)

Py(k)=1 P (k) =1k

Py (k) = y(k*—4)  Ps(k) = 1(k* —Tk) (b)
where k = —L, —L+1,... L.

From eqn (13)

by=2T s+T s+ T + T+ T, +T>+T;]

by =5 [—9T y—6T ,—3T_+3T,+6T,+9T;]

by =4 [25T —15T_, —20T,— 15T, +25T;]

by=t[-T s+T ,+T_ =T, —T,+T;] (©)

substituting eqn (b) and eqn (c) into eqn (a) to obtain

The mean relative and mean square errors in the estimated surface flux

number of future and past temperatures
& (%)
Q(Wm™?)

seven data points

6224.3

eleven data points
6.34
9222

6.8407
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f3(tk) :%[T73+T72+T7| +T0+T1+T2+T3]
+5[=9T ;—6T ,—3T | +3T, +6T,+9T:]k+

+ 25T s — 15T | —20T,— 15T, +25T,](k* —4)
o= T 54T o+ T =T, =T+ T5](* = 7k).  (d)

We see eqn (d) can be used to smooth the data spatially,
for each value of £ new equation is obtained. For one-
dimensional problem there is no need for such a
smoothing because the temperature is measured only at
one node. Rewriting of eqn (d) at the center of the seven
data points (k = 0) gives

f1(0) =5 [—2T s +3T_,+6T_,
+7Ty+6T,4+3T,—2T5].  (e)

The general form of the above equation gives eqn (15).
For more information see [10, 11].
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